Опыт проектирования и эксплуатации систем вентиляции и кондиционирования воздуха зданий учебных центров
На основании рассмотренных особенностей В и КВ различных помещений можно сформулировать рекомендации по выбору принципиальных схем Т и Х и особенностям их эксплуатации.
Опыт проектирования и эксплуатации систем вентиляции и кондиционирования воздуха зданий учебных центров
Продолжение. Первую часть статьи читайте в журнале «АВОК», 2007, № 3, с. 22–30.
3. Рекомендации по выбору принципиальных схем тепло- и холодоснабжения и особенности их эксплуатации
На основании рассмотренных особенностей В и КВ различных помещений можно сформулировать рекомендации по выбору принципиальных схем Т и Х и особенностям их эксплуатации.
Рисунок 1. Иерусалимский университет. Кампус общественных наук. Спортивный центр |
3.1. VAV-системы
VAV-системы как принципиальная схема обеспечения воздухообмена и поддержания параметров микроклимата в помещениях учебного центра своего применения не нашли.
С полным уважением относясь к опыту США в области проектирования и эксплуатации VAV-систем, все же схемы, отработанные в странах Юго-Восточной Азии, когда функции подачи свежего воздуха и поддержания параметров микроклимата делятся между системами ПВУ и системами доводчиков (фэнкойл, VRF и др.), запитанными от центральной, зональной или центрально-зональной системы Т и Х, представляются нам предпочтительными.
Не нашли своего применения и разновидности VAV-систем, такие как общая система подачи свежего воздуха высокого или среднего давления и вентиляторная/безвентиляторная «индуктивная» коробка («mixing box») у каждого потребителя. Несколько таких установленных систем вызвали серьезные нарекания со стороны потребителей и довольно быстро прекратили свое существование. Подобное отношение к VAV-системам может, в частности, объясняться квалифика-цией обслуживающего персонала и его способностью понять и обеспечить работу VAV-систем во всех ее проявлениях.
В тех случаях, когда все же следует избегать прокладки трубопроводов воды (например, в библиотеках), рекомендуется вместо VAV-системы рассмотреть VRF-систему.
Следует отметить, что VAV-системы как системы поддержания баланса воздуха в здании (без выполнения параллельно функций поддержания параметров микроклимата) вполне приемлемы, в частности, как системы компенсации объемов воздуха, удаляемого от вытяжных лабораторных шкафов.
Рисунок 2. Кампус медицинских наук. Студенческий центр |
3.2. Сплит-кондиционеры
О сплит-кондиционерах написано немало, специальная литература богата статьями о надежности, функциональности, долговечности и экономической целесообразности их применения как основного проектного решения по сравнению с центральными или зональными системами холодоснабжения на воде или VRF-системами. На сегодняшний день сплит-кондиционер превратился в электроприбор, который можно купить в магазине, как утюг или чайник, и получить соответствующее покупке качество. Однако то, что годится для частного лица, не годится для общественного здания и особенно для учебного центра. Вряд ли можно выразить отношение к сплит-кондиционерам точнее, чем это сделано в [3]: «…зачем нужен красивый, бесшумный, дешевый, компактный и т. д. кондиционер, если он в один прекрасный день ломается… Как правило, все поломки происходят в период пиковых нагрузок…».
В дополнение ко всем «за» и «против» следует отметить два дополнительных аспекта против применения сплит-кондиционера – наружная эстетика и техобслуживание. Применение сплит-кондиционера как основного решения для кондиционирования офисных помещений или как местных доводчиков для других комнат многоэтажного и многокомнатного учебного центра может превратить это здание в «куст малины», где в качестве ягод выступят блоки компрессоров, усыпавшие фасады здания. Кроме того, огромное количество единиц сплит-кондиционеров потребует техобслуживания на постоянной основе, что, несомненно, скажется на годовом бюджете эксплуатации здания.
Следует избегать установки сплит-кондиционера как основного принципиального решения схемы кондиционирования здания. Исключение составляют точечные решения, как, например, кондиционирование помещений серверных и пр.
Рисунок 3. Кампус прикладных наук. Здание физических, химических и биологических учебных лабораторий |
3.3. Системы с тепловыми насосами (водяной конденсатор) у каждого потребителя
Системы с тепловыми насосами, использующие в качестве источника охлаждения/нагрева конденсаторов водяной контур с t = 28–30 °C, не нашли своего применения в основном из-за создаваемого в здании высокого уровня шума, стоимости и отсутствия необходимости в индивидуальных финансовых расчетах.
3.4. Источники энергии для систем В и КВ учебных центров
Источники энергии по уровню централизации можно разделить на 5 типов:
• центральные (центральная котельная, холодильный центр), обслуживающие кампус;
• зональные (автономная котельная, зональная система подготовки холода – чиллер, VRF), обслуживающие здание учебного центра;
• местно-зональные, обслуживающие этаж в здании центра (поэтажные VRF) или крупное помещение, например, лекционный зал;
• местные (СПК, миницентральные системы DX);
• комбинации источников.
Жидким теплоносителем в системах В и КВ является вода. Климатические условия не требуют применения гликоля в качестве холодоносителя.
По принципу выработки и подачи энергии источники можно разделить на 5 типов:
• центральные и автономные котельные на жидком и газообразном топливе;
• электрические нагреватели прямого нагрева воздуха;
• компрессионные чиллеры (в том числе тепловые насосы) для подготовки тепло- и холодоносителя;
• абсорбционные холодильные установки;
• установки когенерации и тригенерации (одновременная выработка электрической, тепловой и холодильной энергии).
Рисунок 4. Кампус общественных наук. Учебный центр для иностранных студентов |
Последний тип системы представляет собой установку турбинного или дизельно-моторного типа, которая в результате сжигания природного газа или легкого мазута вырабатывает электроэнергию на общие нужды, а также готовит горячую воду 90 °С или пар на нужды общего тепло-снабжения и теплоснабжения абсорбционных холодильных установок.
При наличии центральных систем тепло- и холодоснабжения в здании или вблизи него следует отдавать предпочтение присоединению ПВУ и местных доводчиков к таким системам. Исключение могут составлять:
• Кафетерии – из-за необходимости финансового расчета с частным предпринимателем.
• Аудитории и лекционные залы на 100 и более человек – в редких, но возможных случаях, когда утвержденный график пуска центральных систем находится в явном противоречии с требованиями помещения.
• Помещения с серверами и шкафами связи – из-за круглогодичных требований к подаче холода.
Для обеспечения «сглаживания» противоречий между графиком пуска центральных и зональных систем и потребностей здания учебного центра в утреннем разогреве помещений и в холодные дни переходного периода следует устанавливать и запускать следующие системы местного подогрева:
• Ступенчатые местные электрические нагреватели, установленные на ответвлениях приточной системы в каждую комнату, для подогрева воздуха на 5 °С. При данном способе имеет место определенная экономия энергии за счет коэффициента одновременности, однако, этот вариант дорогой и, кроме того, увеличивается опасность возгорания из-за погрешностей монтажа «по месту».
• Зональные электрические нагреватели, установленные централизованно в ПВУ, позволяют производить плавное поддержание температуры в воздуховоде. Установка таких нагревателей централизованно и, как правило, на заводе-изготовителе со всеми проверками сводит опасность возникновения пожара к минимуму.
• Автономные котельные, обслуживающие здание целиком, в том числе и в отопительный сезон – при наличии соответствующих распоряжений.
• Тепловой насос, который летом может обеспечивать нагрузку по холоду совместно с основной системой холодоснабжения, а в «нестандартное» время может обеспечивать «разогрев», «подогрев» или даже основную отопительную нагрузку.
Зональные системы энергоснабжения следует устанавливать при отсутствии центральных.
Местно-зональные системы (автономный чиллер, автономная DX сплит-установка или крышный кондиционер) интересно рассмотреть для аудитории, «экономайзер» ПВУ которой не справляется с охлаждением зала 100 %-ной подачей наружного воздуха в переходный период.
Следует отдавать предпочтение присоединению к системам тепло- и холодоснабжения по четырехтрубной схеме или присоединению к системам с одновременным наличием тепловой и холодильной энергии от любых источников (например, трехтрубная VRF-система). Такие присоединения могут иметь следующие разновидности:
• Присоединение ПВУ и доводчиков здания к центральным тепловым сетям и к зональной холодильной машине. В этом случае имеет место гибкость в получении холода, несовпадения же между утвержденным графиком пуска центральной котельной и потребностями здания в тепле устраняются сезонным включением местного подогрева.
• Присоединение ПВУ и доводчиков здания к центральным сетям холодоснабжения и к зональной или местной системе подогрева – автономной котельной, электронагревателям и т. д.
• Присоединение ПВУ и доводчиков здания к двум зональным холодильным машинам типа тепловых насосов. В летний период обе машины покрывают холодильную нагрузку, в переходный период одна из машин переводится в режим нагрева и по двум отдельным трубам снабжает водой 45–50 °С локальные установки В и КВ. Кроме того, в зимний период один тепловой насос является резервом для другого. Простая и удобная схема.
• Двухтрубные VRF-системы с электронагревателями в ПВУ и местных доводчиках или трехтрубная VRF-система, позволяющая одновременный нагрев и охлаждение различных потребителей, – являются интересным решением. К недостаткам такого метода следует отнести его высокую начальную стоимость и стандартный ряд оборудования. Не на каждый объем воздуха и холодильную нагрузку можно подобрать ПВУ из такого стандартного ряда.
Проектирование и установка зональных двухтрубных систем для работы в режиме тепловых насосов должна быть ограничена. Нет никакой проблемы установить тепловой насос и обеспечить нагрев/охлаждение офисных помещений по двухтрубной схеме. В то же время применение такой схемы для компьютерных залов обречено на провал. Слишком быстрый переход от нагрева к охлаждению с целью поддержания параметров микроклимата, без обеспечения возможности охлаждения обратной воды хотя бы до 23 °С (процесс может занять 3–6 ч), приводит к остановке всей системы и порче компрессоров.
Рисунок 5. Компьютерный центр кампуса медицинских наук |
3.5. Разное
ПВУ свежего воздуха и ПВУ, выполняющие функции нагрева воздуха на нужды отопления в местах большого скопления людей, должны быть оснащены резервным электродвигателем. Можно хранить такой двигатель в вентиляционной камере в упаковке, замена неисправного двигателя занимает 30–40 мин.
Необходимо обеспечить дублирование источников энергии для таких помещений, как компьютерные залы и классы. В случае выхода из строя основного источника холода, вдобавок к обычному и вполне понятному дискомфорту, могут выйти из строя компьютеры и потерять накопленную в них информацию. Эксплуатация таких помещений по своему отдельному годовому графику предопределяет закрепленное программой требование к установке местно-зональных источников энергии. Таким образом, такое техническое решение – установка теплового насоса в качестве источника холода для В и КВ с дублированием холодоснабжения от центральной системы, присоединение В и КВ к центральному теплоснабжению как к основному источнику тепла и использование теплового насоса как резерв, а также применение электронагревателей в качестве местного догрева в фэнкойле для покрытия кратковременных нагрузок – вполне отвечает всем требованиям и прекрасно работает.
Необходимость систем контроля и регулирования DDC (Direct Digital Control – прямой 1/0 контроль) или PLC (Programmable Logical Control – программный логический контроль) по-прежнему остается неясным вопросом для руководителей учебных заведений и не только. В самом деле, стоимость системы со всеми датчиками, контроллерами, программой, протоколами, линиями связи и компьютерной начинкой довольно высока, а пользу от нее ощутить довольно сложно. Поэтому первое, что отменяется как раздел проекта в случае превышения бюджета, – это системы DDC/PLC. И все же необходимо отметить, что такие системы, как минимум, дают возможность:
• Сократить штат и сэкономить время на попытку понять и устранить неисправности по месту.
• Экономить энергию за счет улучшения регулирования параметров и возможности легко программировать и перепрограммировать графики пуска систем.
• Накопить базу статистических данных в виде таблиц и графиков и выработать на ее основе программы эксплуатации похожих систем.
• Выявить тенденцию к неисправности задолго до действительной аварии.
Заключение
Учебные центры являются зданиями с большим количеством помещений разнообразного целевого назначения, и проектирование систем В, КВ и Т, Х для таких зданий является отнюдь не простой задачей.
Проектировщик должен понимать, что требования стандартов по объемам приточного/вытяжного воздуха и параметрам микроклимата никто не отменял.
Проектировщик должен понимать, что существуют рамки бюджета на капитальное строительство и никто не утвердит «лестницу на Луну», даже если она будет отвечать всем стандартам.
Проектировщик должен понимать, что системы В, КВ и Т, Х обслуживаются не профессорами, а просто квалифицированными техниками. Функционирование «системы-монстра», выполняющей все возможные в природе задачи, перегруженной заслонками, обводами, датчиками и регуляторами, обречено на немедленный провал, если ее действие и динамика ее работы будут непонятны обслуживающему персоналу.
Проектировщик должен понимать, что жизнь системы продолжается и после окончания ее проектирования, и после окончания ее монтажа. Причем жизнь системы в период эксплуатации, как предполагается, должна быть значительно длиннее, чем в оба отмеченных периода. Не следует допускать существенного увеличения эксплуатационных затрат в угоду другим соображениям.
Проектировщик должен понимать, что на дворе 2007 год и заказчик ждет от него надежной, экономичной, современной, эстетичной и контролируемой системы. Причем как проектировщик соединит воедино все эти противоречащие друг другу требования, заказчика совершенно не интересует.
Поэтому целью проектировщика должно являться создание системы вентиляции и кондиционирования воздуха и схемы обеспечения ее энергоносителями на хорошем техническом (пусть и не идеальном) уровне. Должно быть обеспечено приемлемое соответствие всем стандартам – пусть не будет вытяжной системы, воздух «вытеснится» в коридор, а оттуда удалится через туалеты, пусть не будет 23 ± 0,1 °С, 23 ± 1,5 °С будет тоже хорошо. Пусть такая система имеет DDC с ограниченным объемом точек ввода/вывода и с возможностью расширения в будущем. Пусть такая система будет запроектирована с приемлемым разделением функций, проста и понятна в эксплуатации. Пусть такая система чуть-чуть выйдет за рамки бюджета – простят. Пусть такая система не сэкономит все, что только можно, в период эксплуатации, а сэкономит немного меньше – поймут. Если все это имеет место – можно заявлять об успехе.
Подобный подход полностью оправдывает себя в Иерусалимском университете, количество жалующихся не превышает 15 %, что по стандарту CEN CR 1752 является весьма уважаемым результатом.
Если же проектировщик «дает крен» в угоду одному из аспектов – система «умрет» либо на стадии проверки бюджета, либо при сдаче в эксплуатацию.
Статья опубликована в журнале “АВОК” за №4'2007
Статьи по теме
- Вентиляция и кондиционирование воздуха: проблемы отрасли
АВОК №3'2019 - Расчетные параметры наружного климата для проектирования систем холодоснабжения, вентиляции и кондиционирования воздуха
АВОК №7'2020 - Комплекс «Федерация». Системы вентиляции, кондиционирования и холодоснабжения башни «Восток»
АВОК №7'2015 - Опыт проектирования и эксплуатации инженерных систем новых высотных комплексов Москвы
АВОК №2'2005 - Особенности проектирования систем отопления, вентиляции и кондиционирования воздуха в Концертном зале Мариинского театра
АВОК №5'2006 - Особенности проектирования систем вентиляции и кондиционирования воздуха для объектов здравоохранения
АВОК №4'2002 - Водоподготовка для систем отопления, вентиляции, кондиционирования воздуха и холодильных установок
АВОК №6'1999 - Проект и качество – дефицит знаний и мотиваций
АВОК №2'2006 - Пути повышения энергоэффективности способов воздухораспределения
АВОК №5'2012 - Санитарно-защитные зоны промышленных предприятий и проектирование систем приточно-вытяжной вентиляции
АВОК №2'2006
Подписка на журналы