Наружные ограждающие конструкции с повышенным уровнем теплозащиты
Продолжая цикл статей о новых подходах к повышению энергоэффективности зданий, расскажем, как можно минимизировать энергопотребление строящихся и реконструируемых зданий благодаря энергоэффективным вентилируемым ограждающим конструкциям (ЭВОК) с активной рекуперацией теплового потока.
Создание наружных ограждающих конструкций с повышенным уровнем теплозащиты
Продолжая1 цикл статей о новых подходах к повышению энергоэффективности зданий, подготовленный специалистами НИИСФ, расскажем, как можно минимизировать энергопотребление строящихся и реконструируемых зданий благодаря энергоэффективным вентилируемым ограждающим конструкциям (ЭВОК) с активной рекуперацией теплового потока.
Российские нормы по теплозащите
В начале 1990‑х годов в России, аналогично США (см. справку), основное внимание было уделено повышению теплотехнических характеристик ограждающих конструкций зданий, что закреплялось в новой на тот момент редакции СНиП П‑3–79* «Строительная теплотехника» (1995 год).
Если в предыдущей редакции данного нормативного документа минимальное приведенное сопротивление теплопередаче стен для условий Москвы составляло 1,0 м2•°С/Вт, то на первом этапе изменений оно должно было увеличиться до 1,9 м2•°С/Вт, а на втором – до 3,13 м2•°С/Вт, т.е. более чем в 3 раза. И это было осуществлено.
В дальнейшем при разработке актуализированной редакции СНиП 23-02–2003 (СП 50.13330.2012 «Свод правил "Тепловая защита зданий"», 2012 год) дальнейшее повышение минимально регламентируемых теплотехнических характеристик ограждающих конструкций было ограничено, что, к слову, до сих пор вызывает бурную полемику.
Системы активного энергосбережения
В настоящее время для достижения норм по теплозащите в непрозрачных наружных ограждающих конструкциях (стенах и крышах) используется значительный слой утеплителя, что в сегодняшних условиях не всегда экономически и энергетически целесообразно [3].
Именно поэтому в последние годы все большее внимание, в том числе и в нашей стране [4], уделяется новой идеологии, которая получила общее название «системы активного энергосбережения» (САЭ).
В общем случае к САЭ относятся системы, использующие вторичные энергоресурсы, нетрадиционные и возобновляемые источники энергии, а также авторегулирование при изменении условий – как снаружи, так и внутри зданий.
Несмотря на то, что САЭ появились не так давно, уже сегодня можно привести примеры зданий, построенных с использованием ряда технологий, входящих в эту идеологию.
Система термоактивных слоев
Одно из последних интересных зданий, возведенных с использованием системы активного энергосбережения, построено в Германии (рис. 1) на границе с Данией в г. Шлезвиг в конце 2011 года. Здание было построено с участием фирмы Schüco и задумывалось как полностью соответствующее определению пассивного дома. Кроме того, этот дом является частью программы Schüco «Концепция "2 градуса"»2, и применяемая в нем система термоактивных функциональных слоев (рис. 2) направлена на недопущение глобального изменения климата.
Рисунок 1. Пассивный дом с термоактивными стенами в г. Шлезвиг (Германия) |
Рисунок 2. Концепция сменных слоев |
Концепция здания состоит в том, что каждая из стен оборудована четырьмя функциональными слоями (рис. 3).3 При этом слой с установленными фотоэлектрическими панелями является неподвижным, остальные могут перемещаться, заменяя или дополняя друг друга. Открывание и закрывание слоев происходит автоматически по заданной программе в зависимости от времени суток, погоды. Они также могут заменяться и в ручном режиме – по желанию обитателей.
Рисунок 3. Внешний вид: а) функциональные слои; б) неподвижный фотоэлектрический слой |
Помимо указанных технологических новинок в здании применена децентрализованная система вентиляции с функцией рекуперации тепла, а также теплохладоаккумуляция с использованием материалов с фазовым переходом (рис. 4).
Рисунок 4. Работа системы вентиляции: а) ночью; б) днем |
В системе используется встроенная вентиляция с использованием материалов, которые могут за счет фазового перехода аккумулировать и отдавать тепло или холод. В процессе охлаждения в ночное время материалы с фазовым переходом охлаждаются до более низкого уровня температур и восстанавливаются (заряжаются). Днем холодные материалы с переходом фазы забирают энергию у поступающего теплого воздуха. За счет этого воздух охлаждается, а система с использованием материалов с фазовым переходом снова разряжается.
Используемая в здании специальная система фотоэлектрических панелей ProSol TF с перфорацией помимо выработки электроэнергии может пропускать в помещение естественный свет.
Помимо этого предусмотрена система мониторинга, контролирующая температуру и влажность воздуха, освещенность, содержание СО2 и в соответствии с этим управляющая функциональными слоями. К сожалению, пока не опубликованы данные мониторинга эффективности этого здания. Однако представляется, что это сооружение гораздо ближе к системе активного энергосбережения, чем к классу пассивных зданий.
Пока говорить об окупаемости подобных пилотных проектов сложно, поскольку в них используются абсолютно новые концепции, технологии и материалы, которые при массовом производстве и применении становятся значительно дешевле.
Снижение теплопотерь старого жилого фонда
При реализации Федерального закона № 261‑ФЗ «Об энергосбережении…» в области строительства возникает основная проблема – снижение теплопотерь из помещений зданий, построенных в нашей стране в прошлом веке. Они и морально, и физически устарели. Эти здания, которых было построено по некоторым оценкам более 12 млрд м2 во всех климатических регионах страны, являются источником огромных энергетических потерь через ограждающие конструкции, а также за счет неэффективных инженерных систем.
В середине 2000‑х годов в ряде регионов была запущена программа по реновации и санации жилых зданий, построенных в 60–70‑е годы прошлого века. Основные работы предполагали повысить уровень теплозащиты стен за счет различных вариантов наружного утепления, замены или ремонта окон и некоторых коммуникаций. Предполагалось, что за счет этих мероприятий возможно снизить расходы на эксплуатацию жилых помещений на 25–30%.
К сожалению, мониторинг реконструированных домов показал значительно меньший энергетический эффект. Например по результатам обследований, проведенных Мосгосэкспертизой и другими заинтересованными организациями, снижение потребления энергии в них не превышало 10%. Это связано как с неудачными схемами реконструкции, качеством работ, так и с неэффективными дешевыми материалами и решениями, использованными при реконструкции.
Многолетний достаточно положительный опыт строительства энергоэффективных зданий и реконструкции существующих с применением некоторых технологий активного энергосбережения имеется в Республике Беларусь [5, 6]. В последние годы в этой стране реализовано довольно много интересных проектов, а с 2014 года (на основе наработанного опыта) началось массовое строительство подобных зданий и целых районов.
Разработка САЭ в России
Исследования, проведенные в НИИ строительной физики в 2011–2013 годах [7, 8], способствовали разработке предложений по использованию технологий и элементов САЭ в ограждающих конструкциях, которые позволят значительно повысить энергетическую эффективность и комфортность существующих зданий в процессе проведения их тепловой санации при реконструкции и ремонте.
Основой данных предложений являются энергоэффективные вентилируемые ограждающие конструкции (ЭВОК) с активной рекуперацией теплового потока, которые могут быть широко использованы для строительства, капитального ремонта и реконструкции зданий и сооружений с минимальным энергопотреблением.
Предлагаемые ограждающие конструкции фактически становятся приточными устройствами системы вентиляции с последующей активной рекуперацией тепла, уходившего ранее в атмосферу через наружные ограждения зданий. Влажностный режим и теплотехническая однородность наружных ограждающих конструкций зданий также улучшаются.
Одно из наиболее актуальных направлений развития энергосбережения в строительной отрасли – создание ограждающих конструкций с повышенным уровнем теплозащиты за счет активной рекуперации теплового потока. Производство таких изделий должно составлять основу строительной индустрии, а их применение позволит ускорить возведение объектов, снизить стоимость, повысить качество и долговечность зданий, а также комфортность микроклимата помещений.
Широкая номенклатура конструкций, выпускаемых отечественными предприятиями крупнопанельного домостроения, дает возможность проводить многовариантное проектирование, использовать в массовом строительстве конструкции с очень высокими потребительскими свойствами: надежностью, долговечностью, экологичностью, эстетичностью. То же относится и к массовому малоэтажному жилищному строительству, которое очень активно развивается в настоящее время в российских городах и других поселениях.
Энергоэффективные вентилируемые ограждающие конструкции, утилизируя уходящее тепло, возвращают его в помещение, обеспечивая постоянный комфортный воздухообмен, удобны в эксплуатации и являются перспективными для обеспечения энергосбережения с использованием вторичных энергоресурсов и возобновляемых источников энергии.
СПРАВКА |
Системные программы в области энергосбережения в строительстве в США появились после энергетического кризиса в середине 70-х годов прошлого века [1]. В первом законодательном документе в этой области – Energy Policy Act 1992, утвержденном конгрессом США в 1992 году, сформулирована доктрина о том, что потребление энергоресурсов на теплоснабжение и эксплуатацию зданий должно оставаться на существующем в тот период уровне при возрастающем объеме строительства. Стратегическими направлениями реализации концепции документа были названы не только совершенствование инженерного оборудования зданий, внедрение в строительство новых технологий и использование возобновляемых источников энергии, но и существенное повышение теплозащитных характеристик ограждающих конструкций зданий. В последней редакции данного закона (принятой в 2005 году [2]) констатировано, что поставленная задача успешно выполнена на территории страны, несмотря на значительное увеличение объемов строительства. |
Навесные фасадные системы с воздушным вентилируемым зазором и активной рекуперацией теплового потока
Некоторые варианты разработанных конструкций в рамках исследований, выполненных в НИИСФ в 2011–2012 годах, приведены в [7].
Одним из наиболее распространенных вариантов реконструкции ограждающих конструкций существующих зданий является использование навесных фасадных систем с воздушным вентилируемым зазором (НФС с ВВЗ). Именно такой вариант является необычайно удобным для преобразование в ЭВОК.
В частности, одной из проблемных зон в многоэтажных зданиях являются остекленные лоджии. Возможна модернизация этих элементов здания с применением ЭВОК, обеспечивающая (помимо значительного снижения теплопотерь через остекленные элементы лоджий) их использование в качестве элемента вентиляционной системы помещений (рис. 5).
Рисунок 5. Схема энергоэффективной вентилируемой ограждающей конструкции здания с децентрализованной приточно-вытяжной системой вентиляции (с использованием пространства лоджии): а) зимний режим; б) летний режим 1 – переход в вентшахту выбросного
воздуха |
Большинство производителей навесных фасадных систем с вентилируемым воздушным зазором имеют различные варианты использования наружных облицовочных фасадных панелей (фиброцементные и асбестоцементные плиты с декоративным покрытием, алюминиевые панели, многие другие материалы) достаточно большого размера, с небольшим весом и внутренним теплоотражающим слоем из легированной алюминиевой фольги.
Совместно с некоторыми фирмами - производителями НФС с ВВЗ специалистами НИИСФ разрабатываются варианты ЭВОК для использования в новом строительстве, капитальном ремонте и реконструкции зданий различного назначения (рис. 6). В настоящее время институт совместно с некоторыми компаниями – производителями готовит серию лабораторных испытаний эффективности новых конструкций.
Рисунок 6 а. 1 – вертикальная направляющая |
Рисунок 6 б. 1 – кронштейны каркаса фасадной системы NORDEX |
Результаты испытаний сегментов вентилируемых ограждающих конструкций зданий
Разработан универсальный стенд для аэродинамических и теплотехнических испытаний сегментов вентилируемых ограждающих конструкций зданий, который значительно упрощает юстировку параметров воздушного потока в ЭВОК, а также последующие теплотехнические испытания.
В первую очередь подходящими объектами для внедрения энергоэффективных вентилируемых ограждающих конструкций, по нашему мнению, являются детсады, школы, поликлиники, культурно-массовые и общественные здания, где, помимо повышения теплозащитных качеств ограждающих конструкций, необходимо обеспечить комфортное интенсивное вентилирование помещений во время постоянного присутствия людей.
Испытания4, проведенные в 2013 году в климатической камере НИИСФ, показали, что для ЭВОК возможно повысить энергетическую эффективность в несколько раз относительно существующих современных ограждающих конструкций и действующих норм. Были получены коэффициенты рекуперации теплового потока:
- для светопрозрачных ограждающих конструкций выше 90%,
- для непрозрачных ограждающих конструкций выше 95%.
Доказана и возможность ступенчатого повышения эффективности за счет размещения и последовательного действия двух и более теплоотражающих экранов/слоев в зоне действия воздушной завесы.
Это позволяет предположить возможность практически полной рекуперации теплового потока через ЭВОК, включая светопрозрачные конструкции. А это, соответственно, открывает новые перспективы для строительства и реконструкции зданий (сооружений, теплиц) с большим коэффициентом остекления.
В настоящее время НИИСФ проводит многочисленные работы по подготовке разработанных энергоэффективных вентилируемых ограждающих конструкций к опытному внедрению на различных объектах Москвы, Московской области, Республики Башкортостан. Институт готов к сотрудничеству с региональными инвесторами, проектными организациями и индустриальными партнерами по внедрению энергоэффективных вентилируемых ограждающих конструкций с активной рекуперацией теплового потока для строительства и реконструкции зданий и сооружений с минимальным энергопотреблением.
Литература
- Шубин И.Л., Спиридонов А.В. Законодательство по энергосбережению в США, Европе и России. Пути решения» // Вестник МГСУ. 2011. № 3. Т. 1.
- The Energy Policy Act of 2005 (Pub.L. 109–58), the United States Congress, July 29, 2005.
- Шубин И.Л., Спиридонов А.В. Проблемы энергосбережения в российской строительной отрасли // «Энергосбережение». 2013. № 1.».
- Протокол № 1/2014 расширенного заседания Объединенного научно-технического совета по вопросам градостроительной политики и строительства города Москвы (совместно с Межведомственным экспертным советом по энергосбережению в строительстве на территории города Москвы) по теме: «Градостроительная политика города Москвы в области повышения энергетической эффективности городского строительства». г. М., 21 февраля 2014.
- Данилевский Л.Н. Принципы проектирования и инженерное оборудование энергоэффективных жилых зданий. Минск : БизнесСофсет, 2011. 374 с.
- Данилевский Л.Н. Опыт строительства энергоэффективных зданий в Республике Беларусь. Технологии проектирования и строительства энергоэффективных зданий Passive House : Материалы 7‑й конференции по пассивным домам и зданиям с низким энергопотреблением 11–12 апреля 2012 года М., 2012.
- Ахмяров Т.А., Беляев В.С., Спиридонов А.В., Шубин И.Л. Система активного энергосбережения с рекуперацией тепла // Энергосбережение. 2013. № 4.
- Ахмяров Т.А., Спиридонов А.В., Шубин И.Л. Новые принципы проектирования и оценки наружных ограждающих конструкций с использованием рекуперации тепла и других технологий «активного» энергосбережения // Жилищное строительство. 2014. № 6.
1 См. статью «Новый подход к повышению энергоэффективности зданий» (ж. «Энергосбережение», № 5, 2014) где описаны процессы активной рекуперации теплового потока в ЭВОК.
2 Согласно концепции считается, что если среднегодовая температура атмосферы повысится еще на 2 °С, то на Земле наступят необратимые климатические изменения. Данная программа активно продвигается для создания новых энергоэффективных решений, предотвращающих изменения климата. Программа поддерживается не только фирмой Schüco, но и Международным энергетическим агентством и Европейским союзом.
3 На сегодняшний день четыре – это максимально возможное число слоев в данной конструкции.
4 Более подробно результаты экспериментов будут представлены в последующих публикациях.
Статья опубликована в журнале “Энергосбережение” за №6'2014
pdf версияСтатьи по теме
- Рекомендации АВОК «Энергоэффективные здания» (проект)
АВОК №6'2001 - От энергоэффективных к жизнеудерживающим зданиям
АВОК №3'2003 - Экспертиза энергоэффективности строительства зданий
АВОК №7'2003 - Инженерные системы энергоэффективного жилого дома
АВОК №8'2003 - Новый лондонский король
АВОК №2'2004 - Энергоэффективное здание как критерий мастерства архитектора и инженера
АВОК №2'2001 - Пути повышения энергоэффективности эксплуатируемых зданий
АВОК №5'2009 - Энергоэффективные здания – в московское массовое строительство
АВОК №1'1999 - Энергоэффективные здания – возможности московского строительства
Энергосбережение №8'2010 - Энергоэффективные строительные системы и технологии
АВОК №2'1999
Подписка на журналы