Некоммерческое
партнерство
инженеров
Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике
(495) 984-99-72 НП "АВОК"

(495) 107-91-50 ООО ИИП "АВОК-ПРЕСС"

АВОК ассоциированный
член
...
Реклама ООО "Катюша" | ИНН 1659212383 | Erid: 2VtzqvimvWU
Summary:

Модернизация и автоматизация системы теплоснабжения. Опыт Беларуси

Modernization and Automation of Heat Supply System Minsk experiencce

V.A. Sednin, Scientific Consultant, Doctor of  Engineering, Professor,
A.A. Gutkovskiy, Chief Engineer, Belorussian National Technicl University, Scientific Research and Innovations Center of Automated Control Systems in heat power industry

Keywords: heat supply system, automated control systems, reliability and quality improvement, heat delivery regulation, data archiving

Heat supply of large cities in Belorussia, as in Russia, is provided by cogeneration and district heat supply systems (hereinafter - DHSS), where facilities are combined into a single system. However, often the decisions made on individual elements of complex heat supply systems do not meet the systematic criteria, reliability, controllability and environment protection requirements. Therefore modernization of the heat supply systems and creation of automated process control systems is the most relevant task.

Описание:

В. А. Седнин, А.А. Гутковский

Теплоснабжение крупных городов Белоруссии, как и в России, обеспечивается системами теплофикации и централизованного теплоснабжения (далее - СЦТ), объекты которых увязаны в единую схему. Однако часто решения, принимаемые по отдельным элементам сложных систем теплоснабжения, не удовлетворяют системным критериям, требованиям надежности, управляемости и экологичности. Поэтому модернизация систем теплоснабжения и создание автоматизированных систем управления технологическими процессами является наиболее актуальной задачей.

Модернизация и автоматизация системы теплоснабжения. Опыт Беларуси

Теплоснабжение крупных городов Беларуси, как и в России, обеспечивается системами теплофикации и централизованного теплоснабжения (далее – СЦТ), объекты которых увязаны в единую схему. Однако часто решения, принимаемые по отдельным элементам сложных систем теплоснабжения, не удовлетворяют системным критериям, требованиям надежности, управляемости и экологичности. Поэтому модернизация систем теплоснабжения и создание автоматизированных систем управления технологическими процессами является наиболее актуальной задачей.

Модернизация и автоматизация системы теплоснабжения. Опыт Беларуси

Особенности систем централизованного теплоснабжения

Рассматривая основные особенности СЦТ Беларуси, можно отметить [1–5], что они характеризуются:

  • непрерывностью и инерционностью своего развития;
  • территориальной распределенностью, иерархичностью, разнообразием используемых технических средств;
  • динамичностью процессов производства и стохастичностью потребления энергии;
  • неполнотой и низкой степенью достоверности информации о параметрах и режимах их функционирования.

Важно отметить, что в СЦТ тепловые сети, в отличие от других трубопроводных систем, служат для транспорта не продукта, а энергии теплоносителя, параметры которого должны удовлетворять требованиям различных потребительских систем.

Указанные особенности подчеркивают существенную необходимость создания автоматизированных систем управления технологическими процессами (далее – АСУ ТП), внедрение которых позволяет повысить энергетическую и экологическую эффективность, надежность и качество функционирования систем теплоснабжения. Внедрение АСУ ТП сегодня не является данью моде, а вытекает из основных законов развития техники и экономически обосновано на современном этапе развития техносферы.

СПРАВКА

Система централизованного теплоснабжения Минска представляет собой структурно сложный комплекс. В него в части производства и транспорта тепловой энергии входят объекты РУП «Минскэнерго» (Минских тепловых сетей, теплофикационные комплексы ТЭЦ-3 и ТЭЦ-4) и объекты УП «Минсккоммунтеплосеть» – котельные, тепловые сети и центральные тепловые пункты.

Создание АСУ ТП УП «Минсккоммунтеплосеть» было начато в 1999 году, и в настоящее время она функционирует, охватывая практические все теплоисточники (свыше 20) и ряд районов тепловых сетей. Разработка проекта АСУ ТП Минских тепловых сетей была начата в 2010 году, реализация проекта началась в 2012 году и в настоящее время продолжается.

Разработка АСУ ТП системы теплоснабжения Минска

На примере Минска представляем основные подходы, которые были реализованы в ряде городов Беларуси и России при проектировании и разработке АСУ ТП систем теплоснабжения.

С учетом обширность вопросов, охватывающих предметную область теплоснабжения, и накопленного опыта в сфере автоматизации систем теплоснабжения на предпроектной стадии создания АСУ ТП Минских тепловых сетей была разработана концепция. Концепция определяет принципиальные основы организации АСУ ТП теплоснабжения Минска (см. справку) как процесса создания вычислительной сети (системы), ориентированной на автоматизацию технологических процессов топологически распределенного предприятия централизованного теплоснабжения.

Технологические информационные задачи АСУ ТП

Внедряемая автоматизированная система управления в первую очередь предусматривает повышение надежности и качества оперативного управления режимами функционирования отдельных элементов и системы теплоснабжения в целом [6–9]. Поэтому данная АСУ ТП предназначена для решения следующих технологических информационных задач:

  • обеспечение централизованного функционально-группового управления гидравлическими режимами теплоисточников, магистральных тепловых сетей и перекачивающих насосных станций с учетом суточных и сезонных изменений расходов циркуляции с корректировкой (обратной связью) по фактическим гидравлическим режимам в распределительных тепловых сетях города;
  • реализация метода динамического центрального регулирования отпуска тепловой энергии с оптимизацией температур теплоносителя в подающих и обратных трубопроводах тепломагистралей;
  • обеспечение сбора и архивации данных о тепловых и гидравлических режимах работы теплоисточников, магистральных тепловых сетей, перекачивающей насосной станции и распределительных тепловых сетей города для осуществления контроля, оперативного управления и анализа функционирования СЦТ Минских тепловых сетей;
  • создание эффективной системы защиты оборудования теплоисточников и тепловых сетей в нештатных ситуациях;
  • создание информационной базы для решения оптимизационных задач, возникающих в ходе эксплуатации и модернизации объектов системы теплоснабжения Минска.

СПРАВКА 1

В состав Минских тепловых сетей входят 8 сетевых районов (РТС), 1 ТЭЦ, 9 котельных мощностью от нескольких сот до тысячи мегаватт. Кроме того, на обслуживании Минских тепловых сетей находятся 12 понизительных насосных станций, 209 ЦТП.

Организационно-производственная структура Минских тепловых сетей по схеме «снизу вверх»:

  • первый (нижний) уровень – объекты тепловых сетей, включая ЦТП, ИТП, тепловые камеры и павильоны;
  • второй уровень – мастерские участки тепловых районов;
  • третий уровень – теплоисточники, включающие в свой состав районные котельные (Кедышко, Степняка, Шабаны), пиковые котельные (Орловская, Комсомолка, Харьковская, Масюковщина, Курасовщина, Западная) и насосные станции;
  • четвертый (верхний) уровень – диспетчерская служба предприятия.

Общий кадр центральной диспетчерской Минских тепловых сетей

Общий кадр центральной диспетчерской Минских тепловых сетей

Структура АСУ ТП Минских тепловых сетей

В соответствии с производственно-организационной структурой Минских тепловых сетей (см. справку 1) выбрана четырехуровневая структура АСУ ТП Минских тепловых сетей:

  • первый (верхний) уровень – центральная диспетчерская предприятия;
  • второй уровень – операторские станции районов тепловых сетей;
  • третий уровень – операторские станции теплоисточников (операторские станции мастерских участков тепловых сетей);
  • четвертый (нижний) уровень – станции автоматического управления установками (котлоагрегаты) и процессами транспорта и распределения тепловой энергии (технологическая схема теплоисточника, тепловые пункты, тепловые сети и т. п.).

Развитие (создание АСУ ТП теплоснабжения всего города Минска) предполагает включение в систему на втором структурном уровне операторских станций теплофикационных комплексов минских ТЭЦ-2, ТЭЦ-3, ТЭЦ-4 и операторской станции (центральной диспетчерской) УП «Минск­коммунтеплосеть». Все уровни управления планируется объединить в единую вычислительную сеть.

Архитектура АСУ ТП системы теплоснабжения Минска

Анализ объекта управления в целом и состояние его отдельных элементов, а также перспективы развития системы управления позволили предложить архитектуру распределенной автоматизированной системы управления технологическими процессами системы теплоснабжения Минска в рамках объектов РУП «Минскэнерго». Корпоративная сеть интегрирует вычислительные ресурсы центрального офиса и удаленных структурных подразделений, в том числе и станции автоматического управления (САУ) объектов сетевых районов. Все САУ (ЦТП, ИТП, ПНС) и сканирующие станции подключаются непосредственно к операторским станциям соответствующих сетевых районов, устанавливаемым предположительно на мастерских участках.

На удаленном структурном подразделении (например, РТС-6) устанавливаются следующие станции (рис. 1): операторская станция «РТС-6» (ОпС РТС-6) – она является центром управления сетевого района и устанавливается на мастерском участке РТС-6. Для оперативного персонала ОпС РТС-6 обеспечивает доступ ко всем без исключения информационным и управляющим ресурсам САУ всех типов, а также доступ к разрешенным информационным ресурсам центрального офиса. ОпС РТС-6 обеспечивают регулярное сканирование всех подчиненных станций управления.

Архитектура системы управления РТС–6 Минских тепловых сетей

Рисунок 1.

Архитектура системы управления РТС–6 Минских тепловых сетей

Собранная со всех ЦТП оперативная и коммерческая информация направляется для хранения на выделенный сервер базы данных (устанавливается в непосредственной близости от ОпС РТС-6).

Таким образом, с учетом масштабов и топологии объекта управления и сложившейся организационно-производственной структуры предприятия АСУ ТП Минских тепловых сетей строится по многозвенной схеме с применением иерархической структуры программно-технических средств и вычислительных сетей, решающих различные задачи управления на каждом уровне.

Уровни системы управления

На нижнем уровне система управления выполняет:

  • предварительную обработку и передачу информации;
  • регулирование основных технологических параметров, функции оптимизации управления, защиты технологического оборудования.

К техническим средствам нижнего уровня предъявляются повышенные требования надежности, включая возможность автономного функционирования при потере связи с вычислительной сетью верхнего уровня.

Последующие уровни системы управления строятся согласно иерархии системы теплоснабжения и решают задачи соответствующего уровня, а также обеспечивают операторский интерфейс.

Управляющие устройства, устанавливаемые на объектах, помимо своих прямых обязанностей, должны предусматривать и возможность агрегатирования их в распределенные системы управления. Управляющее устройство должно обеспечивать работоспособность и сохранность информации объективного первичного учета при длительных перерывах связи.

Основными элементами такой схемы являются технологические и операторские станции, соединенные между собой каналами связи. Ядром технологической станции должен являться промышленный компьютер, оснащенный средствами связи с объектом управления и канальными адаптерами для организации межпроцессорной связи. Основное назначение технологической станции – реализация алгоритмов прямого цифрового управления. В технически обоснованных случаях некоторые функции могут выполняться в супервизорном режиме: процессор технологической станции может управлять удаленными интеллектуальными регуляторами или программно-логическими модулями, используя при этом протоколы современных полевых интерфейсов.

Информационный аспект построения АСУ ТП теплоснабжения

Особое внимание при разработке уделялось информационному аспекту построения АСУ ТП теплоснабжения. Полнота описания технологии производства и совершенство алгоритмов преобразования информации являются важнейшей частью информационного обеспечения АСУ ТП, построенного на технологии прямого цифрового управления. Информационные возможности АСУ ТП теплоснабжением обеспечивают возможность решения комплекса инженерных задач, которые классифицируют:

  • по стадиям основной технологии (производство, транспорт и потребление тепловой энергии);
  • по назначению (идентификация, прогнозирование и диагностика, оптимизация и управление).

При создании АСУ ТП Минских тепловых сетей предусматривается формирование информационного поля, позволяющего оперативно решать весь комплекс вышеуказанных задач идентификации, прогнозирования, диагностики, оптимизации и управления. При этом информационно обеспечивается возможность решения системных задач верхнего уровня управления при дальнейшем развитии и расширении АСУ ТП по мере включения соответствующих технических служб обеспечения основного технологического процесса.

В частности, это относится к оптимизационным задачам, т. е. оптимизации производства тепловой и электрической энергии, режимов отпуска тепловой энергии, потокораспределения в тепловых сетях, режимов работы основного технологического оборудования теплоисточников, а также расчета нормирования топливно-энергетических ресурсов, энергоучета и эксплуатации, планирования и прогнозирования развития системы теплоснабжения. На практике решение части задач этого вида проводится в рамках АСУ предприятия. В любом случае они должны учитывать информацию, получаемую в ходе решения непосредственно задач управления технологическим процессом, а создаваемая АСУ ТП информационно должна интегрироваться с другими информационными системами предприятия.

Методология программно-объектного программирования

Построение программного обеспечения системы управления, которое является оригинальной разработкой коллектива центра, базируется на методологии программно-объектного программирования: в памяти управляющих и операторских станций создаются программные объекты, отображающие реальные процессы, агрегаты и измерительные каналы автоматизируемого технологического объекта. Взаимодействие этих программных объектов (процессов, агрегатов и каналов) между собой, а также с оперативным персоналом и с технологическим оборудованием, собственно, и обеспечивает функционирование элементов тепловых сетей по предопределенным правилам или алгоритмам. Таким образом, описание алгоритмов сводится к описанию наиболее существенных свойств этих программных объектов и способов их взаимодействия.

Синтез структуры системы управления технических объектов основан на анализе технологической схемы объекта управления и подробном описании технологии основных процессов и функционирования, присущих данному объекту в целом.

Удобным инструментом для составления подобного типа описания для объектов теплоснабжения является методология математического моделирования на макроуровне. В ходе составления описания технологических процессов составляется математическая модель, выполняется параметрический анализ и определяется перечень регулируемых и контролируемых параметров и регулирующих органов.

Конкретизируются режимные требования технологических процессов, на основании которых определяются границы допустимых диапазонов изменения регулируемых и контролируемых параметров и требования к выбору исполнительных механизмов и регулирующих органов. На основании обобщенной информации производится синтез автоматизированной системы управления объектом, которая при применении метода прямого цифрового управления строится по иерархическому принципу в соответствии с иерархией объекта управления.

АСУ районной котельной

Так, для районной котельной (рис. 2) автоматизированная система управления строится на базе двух классов.

Система управления районной котельной

Рисунок 2.

Система управления районной котельной

Верхний уровень – операторская станция «Котельная» (ОпС «Котельная») – основная станция, которая координирует и контролирует подчиненные станции. ОпС «Котельная резервная» – станция горячего резерва, которая находится постоянно в режиме прослушивания и регистрации трафика основной ОпС и ее подчиненных САУ. Ее база данных содержит актуальные параметры и полные ретроспективные данные о функционировании рабочей системы управления. В любой момент времени резервная станция может быть назначена основной с полной передачей ей трафика и разрешением функций супервизорного управления.

Нижний уровень – комплекс объединенных совместно с операторской станцией в вычислительную сеть станций автоматического управления:

  • САУ «Котлоагрегат» обеспечивает управление котлоагрегатом. Как правило, она не резервируется, т. к. резервирование тепловой мощности котельной производится на уровне котлоагрегатов.
  • САУ «Сетевая группа» отвечает за теплогидравлический режим функционирования котельной (управление группой сетевых насосов, линией байпаса на выходе котельной, линией перепуска, входными и выходными задвижками котлов, индивидуальными насосами рециркуляции котлов и пр.).
  • САУ «Водоподготовка» обеспечивает управление всем вспомогательным оборудованием котельной, необходимым для подпитки сети.

Для более простых объектов системы теплоснабжения, например тепловых пунктов и блочных котельных, система управления строится как одноуровневая на базе станции автоматического управления (САУ ЦТП, САУ БМК). В соответствии со структурой тепловых сетей станции управления тепловыми пунктами объединяются в локальную вычислительную сеть района тепловых сетей и замыкаются на операторскую станцию района тепловых сетей, которая, в свою очередь, имеет информационную связь с операторской станцией более высокого уровня интеграции.

Операторские станции

Программное обеспечение операторской станции обеспечивает дружественный интерфейс для оперативного персонала, управляющего работой автоматизированного технологического комплекса. Операторские станции имеют развитые средства оперативного диспетчерского управления, а также устройства массовой памяти для организации краткосрочных и долговременных архивов состояния параметров технологического объекта управления и действий оперативного персонала.

В случаях больших информационных потоков, замыкаемых на оперативном персонале, целесообразно организовать несколько операторских станций с выделением отдельного сервера базы данных и, возможно, коммуникационного сервера.

Операторская станция, как правило, сама непосредственно не воздействует на объект управления – она получает информацию от технологических станций и им же передает директивы оперативного персонала или задания (уставки) супервизорного управления, формируемые автоматически или полуавтоматически. Она образует рабочее место оператора сложного объекта, например котельной.

Создаваемая система автоматизированного управления предусматривает построение интеллектуальной надстройки, которая должна не только отслеживать возмущения, возникающие в системе, и реагировать на них, но и прогнозировать возникновение нештатных ситуаций и блокировать их возникновение. При изменении топологии сети теплоснабжения и динамики ее процессов предусмотрена возможность адекватного изменения структуры распределенной системы управления за счет добавления новых станций управления и (или) изменения программных объектов без изменения конфигурации оборудования существующих станций.

Эффективность АСУ ТП системы теплоснабжения

Анализ опыта эксплуатации АСУ ТП предприятий теплоснабжения1 в ряде городов Беларуси и России, проводимый в течение последних двадцати лет, показал их экономическую эффективность и подтвердил жизнеспособность принятых решений по архитектуре, программному и техническому обеспечению.

По своим свойствам и характеристикам данные системы отвечают требованиям идеологии умных сетей. Тем не менее постоянно ведутся работы по совершенствованию и развитию разрабатываемых автоматизированных систем управления. Внедрение АСУ ТП теплоснабжения повышает надежность и экономичность работы СЦТ. Основная экономия ТЭР определяется оптимизацией теплогидравлических режимов тепловых сетей, режимов работы основного и вспомогательного оборудования теплоисточников, насосных станций и тепловых пунктов.

Литература

  1. Громов Н. К. Городские теплофикационные системы. М. : Энергия, 1974. 256 с.
  2. Попырин Л. С. Исследования систем теплоснабжения. М. : Наука, 1989. 215 с.
  3. Ионин А. А. Надежность систем тепловых сетей. М. : Строй­издат, 1989. 302 с.
  4. Монахов Г. В. Моделирование управления режимами тепловых сетей М. : Энергоатомиздат, 1995. 224 с.
  5. Седнин В. А. Теория и практика создания автоматизированных систем управления теплоснабжением. Минск : БНТУ, 2005. 192 с.
  6. Седнин В. А. Внедрение АСУ ТП как основополагающий фактор повышения надежности и эффективности систем теплоснабжения // Технология, оборудование, качество. Сб. матер. Белорусского промышленного форума 2007, Минск, 15–18 мая 2007 г. / Экспофорум – Минск, 2007. С. 121–122.
  7. Седнин В. А. Оптимизация параметров температурного графика отпуска теплоты в теплофикационных системах // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2009. № 4. С. 55–61.
  8. Седнин В. А. Концепция создания автоматизированной системы управления технологическими процессами Минских тепловых сетей / В. А. Седнин, А. В. Седнин, Е. О. Воронов // Повышение эффективности энергетического оборудования: Материалы научно-практической конференции, в 2-х т. Т. 2. 2012. С. 481–500.

1 Созданных коллективом Научно-исследовательского и инновационного центра автоматизированных систем управления в теплоэнергетике и промышленности Белорусского национального технического университета.

купить online журнал подписаться на журнал
Поделиться статьей в социальных сетях:

Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций.

Статья опубликована в журнале “Энергосбережение” за №8'2016

PDF pdf версия


Реклама на нашем сайте
...
ООО «Арктика групп» ИНН: 7713634274 erid: 2VtzqvPGbED
...
Реклама / ООО «ИЗОЛПРОЕКТ» / ИНН: 7725566484 | ERID: 2VtzqwXxP2k
...
Реклама: СОЮЗ-ПРИБОР | ИНН 1657012967 | erid: 2VtzqwXm44Y
Яндекс цитирования

Подписка на журналы

АВОК
АВОК
Энергосбережение
Энергосбережение
Сантехника
Сантехника
Реклама на нашем сайте
...
Реклама / ООО “ТПК Арекс” / ИНН: 7722489658 / erid: 2VtzqvwmHP3
...
реклама ООО "БДР ТЕРМИЯ РУС" / ИНН: 7717615508 / Erid: 2VtzqvBV5TD
BAXI
Онлайн-словарь АВОК!